
	

	

GPU-Accelerated	Computing:	Maximizing	Performance	for	the	24/7	
Semiconductor	Manufacturing	Environment	

	
By	Aki	Fujimura,	CEO	of	D2S,	Inc.	

2016	
	
Executive	Summary	
The	computing	applications	used	in	semiconductor	design	and	manufacturing	have	
ever-increasing	requirements	for	speed,	accuracy	and	reliability.	The	continuation	
of	Moore's	Law	creates	a	perpetual	demand	for	greater	accuracy	as,	with	each	new	
process	node,	larger	numbers	of	increasingly	smaller	features	are	crowded	onto	
each	mask	and	wafer.	Computing	farms,	where	thousands	of	central	processing	
units	(CPUs)	are	strung	together	to	handle	many	jobs	in	parallel,	have	become	
ubiquitous	to	address	the	need	for	faster	computation.	However,	CPU	clock-speed	
gains	began	to	decrease	at	about	3GHz,	and	CPUs	turned	to	greater	bit-widths	and	
multi-core	and	multi-processor	configurations	so	that	their	performance	could	
continue	to	scale.	Graphics	processing	unit	(GPU)-acceleration	offers	the	needed	
boost	to	CPU-only	computing	to	address	the	on-going	requirements	of	the	
semiconductor	industry.	Market-proven	GPU-acceleration	solutions	combine	the	
strengths	of	both	CPU	and	GPU	computing	to	achieve	optimal	acceleration	and	
cost/performance	ratios.	The	semiconductor-manufacturing	environment	is	
sensitive	to	any	downtime,	particularly	in	the	24/7	clean	room.	A	computing	
platform	with	mean-time-between-failures	and	mean-time-to-repair	good	enough	
for	the	clean	room	is	ready	for	any	deployment	in	semiconductor	manufacturing.	
Today,	GPU-accelerated	systems	have	been	deployed	successfully	in	semiconductor	
manufacturing	by	companies	such	as	NuFlare	and	Advantest.	
	
Introduction	
Even	with	the	innate	limitations	of	193i	lithography,	feature	sizes	are	shrinking	on	
the	mask,	while	features	on	the	wafer	are	shrinking	even	faster.	Perhaps	more	
importantly,	the	requirement	for	precision	on	both	mask	and	wafer	continues	to	
increase.	The	long-awaited	arrival	of	extreme	ultraviolet	(EUV)	masks	will	mean	
that	feature	sizes	will	shrink	dramatically	and	precision	requirements	will	rise	
suddenly	in	one	generation.		
	
These	trends	put	an	unusual	demand	on	semiconductor	equipment	manufacturers	
to	provide	more	precision	without	impacting	turnaround	time.	So,	as	the	data	sets	
upon	which	semiconductor	design	and	manufacturing	applications	must	operate	
grow	ever	larger	and	more	complex,	runtimes	for	processes	at	all	stages	of	chip	
design	and	manufacturing	have	become	a	significant	challenge	for	the	
semiconductor	industry.		
	
Over	the	years,	several	different	approaches	to	massively	parallel	computing	have	
been	developed	to	address	this	issue,	including	Intel’s	MIC	Architecture,	IBM’s	Blue	
Gene,	and	coprocessors,	such	as	digital-signal	processors	(DSPs)	and	field-
programmable	gate	arrays	(FPGAs).	GPU-accelerated	computing	also	emerged	as	an	

	

	

attractive	option	for	computation-intensive	applications.	At	first,	because	of	the	
consumer-market	roots	of	GPUs,	the	scientific	computing	community	was	cautious	
in	adopting	GPU-accelerated	applications	for	production	use.	However,	today	it	is	
clear	that	GPU-accelerated	computing	already	has	begun	to	play	a	significant	role	in	
computing	for	semiconductor	design	and	manufacturing.		
	
The	key	to	reaping	the	benefits	of	GPU-accelerated	computing	is	to	apply	it	where	it	
will	have	the	greatest	impact,	to	balance	it	carefully	with	CPU-based	computing,	and	
to	create	robust,	reliable	systems	around	the	GPUs	that	can	perform	even	in	the	
24/7	operations	of	a	clean	room	environment.		
	
GPU-Acceleration:	Gaming	Roots,	Expanding	to	Scientific	Computing	
GPUs	were	first	developed	as	processing	engines	for	the	complex	graphical	content	
of	computer	games	in	the	1990s.	This	very	lucrative	and	highly	competitive	market	
fueled	the	rapid	growth	and	development	of	GPUs	as	sophisticated	computing	
devices.		
	
By	the	early	2000s,	substantial	clusters	that	included	GPUs	were	being	
commissioned	in	research	environments.		But	early	generations	didn't	yet	have	the	
reliability	and	repeatability	required	for	production	or	manufacturing	applications.	
An	incorrectly	computed	value	in	computer	game	graphics	may	result	in	a	wrong	
pixel,	which	may	not	even	be	noticeable.	However,	in	a	semiconductor	mask	data	
processing	program,	the	same	incorrect	value	might	endanger	a	multi-million-dollar	
investment	in	a	chip.			
	
Clearly,	there	was	great	potential	for	applying	GPU-acceleration	to	scientific	
computing,	and	with	the	wave	of	innovations	and	evolution	tracking	along	with	
Moore’s	Law,	general-purpose	graphics	processing	unit	(GPGPU)	computing	became	
popular	by	the	mid-2000s.	GPGPUs	became	a	separate	product	line	for	the	GPU	
manufacturers,	specifically	addressing	the	needs	of	commercial	users.	The	
introduction	of	languages	and	frameworks	such	as	Brook,	CUDA,	and	OpenCL	made	
GPGPUs	a	viable	platform	for	application	development.	The	leading	GPU	developers	
worked	with	the	scientific	computing	community	to	bring	proven,	professional	
versions	of	their	GPUs	to	market	by	the	start	of	this	decade.	Floating	point	
calculations	of	GPGPUs	became	IEEE	compliant,	just	as	those	of	CPUs.	Repeatability	
for	parallel	computing	is	difficult,	but	the	challenges	are	the	same	whether	with	
CPU-only	computing	or	with	GPU-acceleration.		
	
Today,	robust	and	production-proven	GPU-accelerated	manufacturing	equipment	is	
deployed	in	risk-intolerant	semiconductor	manufacturing	lines.	For	example,	the	
Advantest	E3640	MVM-SEM	uses	GPU-accelerated	wafer	plane	analysis	(WPA)	of	
photomask	images	to	predict	how	the	image	will	look	on	the	silicon	wafer.	The	
machine	operator	is	able	to	decide	in	real-time	whether	those	mask	features	are	
suitable	for	production.	Another	example	is	the	NuFlare	EBM-9500	eBeam-based	
mask	writer,	which	uses	GPU-accelerated,	inline	thermal-effect	correction	(TEC)	to	
improve	the	quality	of	the	photomask	while	significantly	reducing	the	write	time.	

	

	

The	low	latency,	precise	calculations	essential	to	both	of	these	applications	cannot	
be	achieved	with	an	off-the-shelf	solution	without	GPU-acceleration.			
	
Successful	GPU-Acceleration	is	a	Matter	of	Careful	Balance	
Adopting	GPU-accelerated	computing	is	not	a	simple	matter	of	replacing	CPUs	with	
GPUs.	A	naive	port	of	an	application	written	for	a	CPU-based	platform	to	a	GPU-
accelerated	platform	may	only	realize	an	acceleration	of	3-4X.	To	realize	the	>10X	
acceleration	potential	of	GPU-based	computing,	an	application	must	be	conceived	
with	GPUs	in	mind	and	its	algorithms	designed	to	fully	exploit	the	strengths	–	and	
avoid	the	weaknesses	–	of	GPU-accelerated	computing.	The	most	important	thing	is	
to	understand	when	to	deploy	GPUs	and	when	to	use	CPUs.	A	robust	GPU-
acceleration	approach	enables	a	sophisticated	software	engineer	to	combine	the	
strength	of	each	to	the	benefit	of	the	whole	system.		
	
While	skillful	engineering	can	often	morph	a	given	problem	into	one	that	is	more	
suitable	for	one	platform	or	the	other,	some	generalizations	hold	true.	GPUs	excel	at	
single-instruction,	multiple	data	(SIMD)	calculations,	particularly	when	the	
application	involves	lots	of	things	(like	pixels	or	entries	of	a	matrix)	that	require	the	
same	calculations,	or	where	latency	is	critical,	such	as	real-time	or	interactive	
computing	involving	simulation.	Gaussian	convolutions	are	one	example	of	the	
kinds	of	computation	at	which	GPUs	excel.	
	
Likewise,	CPUs	excel	at	heuristics	that	have	many	deductive	branches,	such	as	a	
series	of	if-then-else	sequences	that	determine	what	to	calculate	depending	on	the	
situation.			
	
Instead	of	just	swapping	out	CPUs	for	GPUs,	the	real	task	is	to	combine	some	ratio	of	
GPUs	to	CPUs	in	a	single	system.	Clever	engineering	can	optimize	these	combined	
resources	for	many	computational	problems,	particularly	scientific	applications.	The	
programming	effort	of	a	GPU-accelerated	platform	involves	deciding	what	to	put	on	
CPUs,	what	to	put	on	GPUs,	then	scheduling	and	load-balancing	the	two	to	achieve	
optimal	overall	performance.	
	
The	greatest	overall	acceleration	gains	result	from	loading	GPUs	only	with	
computations	of	much	higher	advantage	and	using	the	otherwise	idle	cores	of	the	
CPUs	that	the	GPU	accompanies	to	handle	other	operations.	In	this	way,	every	
calculation	within	a	system	can	be	faster	by	assigning	it	to	the	optimal	computing	
resource.	
	
This	balanced	acceleration	approach	is	applicable	especially	to	real-time	
applications	required	for	the	in-line	computations	embedded	in	semiconductor	
manufacturing	equipment.	There	are	ample	opportunities	for	software	
enhancement	of	such	operations:	lithography	simulation,	eBeam	simulation,	
charging-effect	correction,	thermal-effect	correction,	process	simulation,	and	
practically	any	simulation	of	natural	effects,	which	can	benefit	from	GPU-
acceleration.	

	

	

The	GPU	“Sweet	Spot”	
The	biggest	difference	between	CPUs	and	GPUs	is	the	number	of	computing	threads	
available.	A	new-generation	GPU	can	run	500	times	more	concurrent	computing	
threads	than	a	similar-generation	CPU.	This	factor	of	500	makes	a	big	difference	for	
certain	types	of	computational	tasks.	Making	any	given	computing	sub-element	run	
well	on	GPUs	is	about	finding	an	approach	to	the	problem	that	fully	utilizes	the	500X	
difference	in	the	number	of	threads	available.			
	
This	computing-thread	advantage	is	why	GPUs	shine	in	situations	where	accuracy	is	
critical	but	execution	speed	cannot	be	compromised.	For	instance,	an	engineer	
designing	an	application	for	a	CPU-centric	approach	might	need	to	abbreviate	
computing	based	on	many	specialized	situations	or	contexts	(as	in	simulations).	In	a	
CPU-centric	environment,	detailed,	context-specific	models	are	often	the	best	way	to	
balance	accuracy	with	computation	speed.	However,	context-specific	models	are	
inherently	context-sensitive.	These	heuristics	are	always	prone	to	loss	of	precision	
in	the	boundary	between	different	contexts.	
	
In	contrast,	an	engineer	designing	for	a	GPU-based	system	might	opt	for	a	brute-
force	approach,	where	fundamental	physical	phenomena	can	be	mathematically	
computed	by	taking	advantage	of	the	500X	difference	in	the	available	computing	
threads	to	provide	the	most	accurate	results.	No	context-specific	models	are	
required	because	every	situation	is	computed	accurately	based	on	the	underlying	
physics.	Uniquely	with	GPU-acceleration,	brute-force	computation	can	be	done	in	
the	same	elapsed	time	as	CPU-only	computation	using	a	platform	of	similar	cost.		
	
GPU-Computing	Case	Study:	Cost/Performance	Analysis	
D2S	first	turned	to	GPU-acceleration	in	2009	for	its	model-based	mask	data	
preparation	(MB-MDP)	technology.	MB-MDP	was	developed	in	response	to	the	
increasing	use	of	complex	mask	shapes	–	either	Manhattan	shapes	with	a	large	
number	of	jogs,	or	curvilinear	shapes	such	as	ideal	Inverse	Lithography	Technology	
(ILT)	output	–	for	masks	targeting	leading-edge	semiconductor	processes.		
	
CPUs	are	designed	for	“if-then-else”	algorithmic	flexibility,	so	most	traditional	
computational	approaches	to	mask	data	preparation	have	been	rule-based,	where	
thousands	of	rules	are	used	to	define	mask	shapes	and	how	they	should	be	
processed.	When	a	complex	shape	doesn’t	exactly	fit	any	of	the	rules	in	the	database,	
traditional	approaches	“stitch”	together	an	approximation	of	the	complex	shape	
using	the	rules	at	hand.	However,	this	process	is	both	time-consuming	and	error-
prone.	As	masks	became	more	and	more	complex,	traditional	CPU-only	computation	
resulted	in	prohibitive	processing	times.		
	
D2S	recognized	that	Gaussian	convolution	was	well-suited	to	GPU	computation,	and	
that	a	GPU-accelerated	system	could	compute	precisely	an	eBeam	simulation	(or	
other	mask-effect	simulations)	for	any	arbitrary	shape	in	about	the	same	time	as	
traditional	rule-based	approaches	took	to	create	an	approximation	of	these	
shapes.	Because	an	actual	computation	does	not	suffer	from	the	stitching	problems	

	

	

often	encountered	in	the	traditional	processing	of	complex	shapes,	the	advantages	
of	GPU-acceleration	are	particularly	strong	for	complex	masks.		
	
As	an	illustration,	D2S	ran	Gaussian	convolution	on	an	arbitrarily	sized	piece	of	
mask	data	(~80μm	by	80μm,	10nm	pixels),	using	a	node	of	its	fourth-generation	
Computational	Design	Platform	(CDP)	to	demonstrate	runtimes	for	a	CPU-only	
implementation,	and	for	a	CPU+GPU	implementation.	The	D2S	CDP	node	comprises	
two	NVIDIA	K-80	GPUs	and	two	Intel	Xeon	E5-2630	v3	CPUs.	The	“CPU	Only”	
implementation	runs	on	one	of	the	CPUs	using	all	eight	cores.	The	“CPU+GPU”	
implementation	runs	on	one	GPU	and	uses	one	core	of	one	CPU	(this	GPU	
implementation	mirrors	the	way	the	D2S	CDP	is	used	in	actual	semiconductor	
manufacturing	applications	–	the	other	CPU	cores	are	used	to	perform	other	
operations).	Algorithms	and	implementations	were	optimized	for	each	platform	
separately.	The	runtimes	are	graphed	in	Figure	1	below.	The	CPU+GPU	version	is	
10X	faster.		
	

	
Figure	1.	Gaussian	convolution	run	on	CPU+GPU	and	an	eight-core	CPU.	(Data	size:	~80	μm	by	80μm,	
10nm	pixels).		
	
Of	course,	economics	play	a	part	as	well.	A	comparison	of	costs	needs	to	take	into	
account	the	costs	of	ownership,	including	power	consumption	and	space	
requirements,	which	are	especially	important	in	a	clean	room.	The	D2S	CDP	uses	
two	GPUs	per	board	for	heavy	computing,	and	each	GPU	costs	about	$4200	and	
consumes	350W	peak	power.	The	two	CPUs	on	each	board	are	2.6GHz	(assuming	
Turbo	speed	when	all	cores	are	used)	dual	processors,	which	cost	about	$650	each	
and	consume	85W	peak	power.	The	need	to	maintain	a	desirable	thermal	density	
prevents	packing	more	CPUs	or	GPUs	on	the	same	board.	To	contrast,	a	CPU-only	
cluster	would	likely	need	to	pack	20	dual	processor	boards	into	a	7U	rackmount	
space,	each	board	carrying	a	pair	of	E5-2699	v4	(22-core	2.8GHz	assuming	Turbo	
speed	when	majority	of	the	cores	are	used)	processors.	This	processor	configuration	
costs	about	$4100	and	consumes	145W	peak	power.	CPUs	offer	many	variations	on	
clock	speeds,	numbers	of	cores	and	numbers	of	processors	sharing	the	bus.	
Different	applications	optimize	differently,	and	different	choices	of	CPUs	would	offer	

0 1 2 3

CPU+GPU

CPU	Only

Processing	time	in
seconds

	

	

different	trade-offs,	but	this	is	a	good	representative	example	of	a	“CPU-Only”	
configuration	for	data	processing.	Partitioning	the	problem,	adding	a	halo	region	
around	each	partition,	and	potentially	communicating	between	partitions	all	add	
extra	overhead,	but	we	assume	for	this	study	that	the	overhead	is	zero.	In	reality,	
there	would	be	less	overhead	for	a	“CPU+GPU”	configuration	because	each	partition	
can	be	larger.	
	
Assuming	a	“CPU+GPU”	configuration	that	is	a	D2S	CDP	node,	and	comparing	that	
against	the	“CPU-Only”	configuration	described	above,	the	comparison	along	various	
metrics	would	be	as	shown	in	Table	1	below.	We	compare	in	the	same	7U	
rackmount	space.		The	“CPU-Only”	version	would	have	40	CPUs.	The	“CPU+GPU”	
version	would	have	14	CPUs	and	14	GPUs.			
	

In	7U	Rackmount	Space	 CPU-Only	 CPU+GPU	

Processor	Cost	Per	7U	 $164,000	 $67,900	

Power	Consumed	Per	7U	 5800W	 6090W	

Speed	of	eBeam	Simulation	 2.27	units	of	time	 1.67	units	of	time	

Performance/$	 2.7	 8.8	

Performance/Watt	 76	 98	
Table	1.	Cost/performance	analysis	for	CPU	only	vs.	CPU+GPU	computing	nodes.	
	
The	“CPU+GPU”	combination	has	a	substantially	better	performance	per	dollar	with	
a	slightly	improved	performance	per	watt.	
	
Passing	the	Clean	Room	Reliability	Test	
There	is	nothing	inherently	different	about	computational	algorithms	that	run	in	a	
semiconductor	manufacturing	clean	room	from	any	other	environment	where	the	
system	is	run	on	a	continuous,	24/7	basis.	However,	the	computational	system	
needs	to	meet	the	more	stringent	environmental	requirements	of	the	clean	room,	
where	even	small	variations	in	heat	or	contaminant	levels	are	unacceptable.	Also,	
there	is	a	substantive	difference	in	the	design	of	the	system	that	will	meet	the	much	
more	difficult	and	stringent	requirements	of	installation	and	service	in	a	clean	room.		
	
To	service	equipment	in	a	clean	room,	all	of	the	service	personnel	and	equipment	
must	be	cleaned,	and	clothed	or	wrapped	to	meet	clean-room	standards,	which	can	
make	even	a	simple	repair	unwieldy.	The	system	must	be	designed	to	require	a	
minimum	of	operational	steps	in	the	clean	room.	Second,	any	stoppage	on	the	line	in	
a	clean	room	is	very	expensive,	both	for	the	manufacturer	in	terms	of	slowing	
throughput	and	for	their	customer,	for	whom	a	delay	of	a	few	days	can	mean	
millions	of	dollars	in	lost	revenue.		The	system	must	be	designed	for	high	mean-
time-between-failures	and	low	mean-time-to-repair.	

	

	

	
Any	system	designed	for	this	challenging	environment	requires	careful	engineering	
for	reliability,	as	well	as	for	ease	of	service	and	recovery.	All	computing	platforms,	
whether	CPU-only	or	GPU-accelerated,	are	only	as	reliable	as	their	most	vulnerable	
component.	But	every	system	includes	necessary	components,	such	as	power	
supplies,	that	will	fail	regularly	under	continuous	use.	It’s	not	so	much	a	question	of	
“will	something	fail?”,	but	rather	“what	happens	when	something	does	fail?”	This	is	
the	real	reliability	challenge	for	deployment	of	any	system	used	for	semiconductor	
manufacturing.	
	
There	are	two	aspects	to	a	robust	and	reliable	GPU-accelerated	system:	redundancy	
and	recovery.	First,	smart	redundancy	can	help	keep	the	system	online.	Hot-spares	
play	an	important	part;	for	instance,	when	one	power	supply	fails,	a	spare	part	
already	installed	in	the	system	is	automatically	called	into	service	with	no	stoppage.	
Notifications	enable	technicians	to	replace	the	failed	part	without	downtime	for	the	
system	as	a	whole.		
	
Recovery	is	the	other	important	aspect	of	reliability.	The	complex	computations	
performed	in	the	semiconductor	mask	shop,	for	instance,	may	take	24	hours	to	run.	
If	a	node	fails	in	hour	23,	what	happens?	Must	the	operation	start	again	from	the	
beginning?	Can	the	operation	recover	itself	where	it	left	off?	Or,	can	the	system	
move	to	hot	spares	and	finish	the	operation	on	its	own,	if	a	bit	slower	(say,	in	24	
hours	and	15	minutes)?	And	if	a	system	reboot	is	necessary,	does	the	reboot	take	
days?	Hours?	Minutes?	These	are	quite	literally	million-dollar	questions.	
	
The	answers	to	these	questions	decide	whether	or	not	any	computing	platform	is	
reliable	enough	to	be	used	in	this	demanding	environment.	Today,	GPU-accelerated	
systems	are	in	deployment	in	multiple	areas	of	semiconductor	manufacturing,	
including	in	the	clean-room	environment.	There	is	no	question	that	GPU-accelerated	
computing	is	just	as	reliable	and	repeatable	as	CPU-only	computing.	Design	for	
resilience,	recoverability	and	serviceability	make	GPU-accelerated	platforms	
appropriate	for	even	the	clean	room.		
		
Conclusion	
In	the	never-ending	quest	for	higher	precision,	better	throughput,	and	more	
functionality	demanded	by	the	industry	to	keep	up	with	Moore's	Law,	GPU-
acceleration	and	related	simulation-based	technologies	will	play	a	key	role.	Because	
of	its	ability	to	shine	in	applications	where	accuracy	is	critical	but	execution	speed	
cannot	be	compromised,	it	is	clear	that	GPU-accelerated	computing	is	the	future	for	
many	applications	in	the	world	of	semiconductor	design	and	manufacturing	with	its	
unusual	demand	for	ever-more	precision	without	any	change	to	turnaround	time.		
	
Successful	GPU-accelerated	systems	are	not	a	wholesale	replacement	of	CPU-based	
computing,	but	rather	a	balance	of	GPUs	with	CPUs	so	that	each	processor	is	
assigned	the	part	of	the	task	most	suited	to	its	architecture.	Engineering	skill	is	
needed	to	build	a	GPU-computing	platform	that	manages	the	balance	of	GPUs	and	

	

	

CPUs	within	the	system.	Field	experience	and	expertise	are	required	to	create	GPU-
accelerated	computing	platforms	that	are	robust	and	reliable	enough	for	use	in	risk-
averse	semiconductor	manufacturing	facilities.	With	the	right	balance	of	computing	
resources,	and	with	“clean	room	ready”	reliability,	GPU	computing	will	play	a	
significant	role	in	the	semiconductor	manufacturing	sector	as	the	industry	gears	up	
to	tackle	its	next	set	of	challenges.	
	

