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ABSTRACT  

Sub-nanometer accuracy attainable with electron micrograph SEM images is the only way to “see” 

well enough for the mask analysis needed in EUV mask production. Because SEM images are pixel 

dose maps, deep learning (DL) offers an attractive alternative to the tedious and error-prone mask 

analysis performed by the operators and expert field application engineers in today’s mask shops. 

However, production demands preclude collecting a large enough variety and number of real SEM 

images to effectively train deep learning models. We have found that digital twins that can mimic the 

SEM images derived from CAD data provide an exceptional way to synthesize ample data to train 

effective DL models. Previous studies [1, 2, 3, 4] have shown how deep learning can be used to create 

digital twins. However, it was unclear if SEM images generated with digital twins would have 

sufficient quality to train a deep learning network to classify real SEM images. This paper shows how 

we built three DL tools for SEM-based mask analysis. The first tool automatically filters good quality 

SEM images, particularly for test chips, using a DL-based binary classifier. A second tool uses another 

DL model to align CAD and SEM images for applications where it is important that features on both 

the images are properly aligned. A third tool uses a DL multi-class classifier to categorize various 

types of VSB mask writer defects. In developing the three tools, we trained state-of-the-art deep neural 

networks on SEM images generated using digital twins to achieve accurate results on real SEM 

images. Furthermore, we validated the results of trained deep learning models through model 

visualization and accuracy-metric evaluation. 

Keywords: photomask, mask analyses, SEM inspection, image registration, deep learning, mask 

simulation, mask defect categorization, fault detection 

1. INTRODUCTION  

Advancements in deep learning (DL) related to cognitive pattern matching abilities have enabled many 

recognition and decision tasks in various real-life applications. In particular, in the field of computer 

vision, state-of-the-art neural networks have been applied to identify and classify objects, synthesize 

images, improve super-resolution, etc. These deep learning methods have shown promising outcomes. 

Manufacturing industries are leveraging artificial intelligence (AI), especially deep learning for their 

smart manufacturing capabilities related to inspection, anomaly detection, machine vision, predictive 

analysis, and maintenance [13]. Deep learning capabilities have augmented human experts in the field 

of manufacturing to make better decisions in less time. Mask shops are no different and need to extend 

similar smart manufacturing capabilities to their SEM-based mask analyses. Since SEM images are 

pixelated dose maps, almost all the deep learning-based computer vision techniques can be applied to 

these SEM images for better inspections and analyses. In this paper, we propose three tools for mask 

analysis by leveraging deep learning techniques. 
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1.1 Three Useful DL Tools 

We built three tools for our DL toolset for SEM-based mask analysis. The first is a tool (Fig-1) to 

automatically filter good quality SEM images using a DL-based binary classifier to filter out good 

SEM images, particularly for test chips. Because test chips purposefully challenge the limits of the 

mask process, it is normal to have bad SEM images. The measurement values that are extracted by 

CD-SEM machines need to reject any such bad images, and those extracted measurements should be 

ignored in any further analysis. 

 

Fig-1: Automatically Identify Good SEM Images and Reject Bad Ones 

 

The second tool (Fig-2) is for aligning CAD and SEM images for applications that require CAD as 

well as SEM images, where it is important that features on both the images are properly aligned. We 

built a second DL model to align CAD and SEM images. 

 

Fig-2: Properly Align Features on CAD with SEM 

 

For the third tool (Fig-3) for VSB-writer defect classification, we used a DL multi-class classifier to 

categorize various types of VSB mask writer defects. 

 

Fig-3: Identify and Classify VSB Mask Writer Defects  
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All three applications use state-of-the-art deep neural networks. A common challenge for applying 

deep learning to SEM-based analysis for the mask shops, and for that matter any production-quality 

deployment of deep learned applications, is that a huge amount of data is required. In the large 

numbers of images, typically in 100,000s of images, you need good coverage of all types of data 

including different types of normal data, but also a large number of anomalous data. In general, it’s 

hard to obtain a large number of SEM images. It is even harder to get SEM images with anomalies 

like defects.  

Mask shops are highly skilled and do an incredible job of not creating defective features, so having 

enough SEM images with a variety of defects to sufficiently train deep learning networks is difficult. 

A robust alternative is to be able to generate and synthesize the SEM images. For this purpose, we 

used SEM digital twins described in the next section. 

1.2 SEM Digital Twins 

Deep learning networks are programmed by data, instead of by writing explicit algorithmic code, and 

hence require large amounts of data [5]. In image-based DL applications, while training the network, 

one can find a certain set of input images that could confuse the network, and the deep learning 

engineer fixes the network by finding a new set of images to train the network with better accuracy. 

DL also needs specific types of SEM images to augment data where the network is confused. So, in 

the process of improving the performance of deep learning networks, it is critical to be able to collect 

or generate more types of images where the network is prone to confusion. Because of the difficultly 

and expense of obtaining enough SEM images from mask shops to do this, the only viable option is 

to generate SEM images. SEM digital twins can be used to generate any specific type of an SEM 

image. 

A digital twin is a digital clone of a physical entity or a system that is created using mathematical and 

physics-based modeling. Digital twins offer an efficient way to study and observe the performance 

and behavior of real-life systems. Based on this concept, as shown in Fig-4 below, we built deep 

learning-based SEM digital twins to generate realistic-looking SEM images [6]. The SEM digital 

twins take CAD data, which is a simulated mask pattern, and output corresponding generated SEM 

images. Different patterns, normal as well as with anomalies having defects, could be induced to CAD 

data through simulation, and the digital twins can then be used to generate SEM images. The generated 

SEM images are very similar to real SEM images and can be used for deep learning training. 

 

Fig-4: SEM Digital Twins 

 



 

 

 

 

4 

 

1.3 Millions of SEM Images Generated 

Using digital twins, we generated millions of SEM images. These SEM images have regular geometry 

patterns, as well as patterns with anomalous defects as in Fig-5. Per our knowledge, our digital twins’ 

framework is the first system to generate synthetic SEM images with curvilinear shapes [1]. 

 

Fig-5: Generated SEM Images with Normal, Defect and Curvilinear Shapes  

 

The next three sections of the paper describe our three DL tools for mask analysis. Each section 

explains the need for the tool, training and test data used, the underlying DL model, and our results. 

The second and third tools used and needed SEM digital twins to generate millions of test cases. 

 

2. TOOL TO AUTOMATICALLY FILTER HIGH QUALITY SEMS  

2.1 Need for the Tool 

It is normal to have bad SEM images for test chips, because the test patterns purposefully challenge 

the limits of the mask process. This causes the features to be printed on the mask incorrectly, due to 

intended and induced problems. For example, a 30nm wide wire will most likely not resolve on the 

mask when the limit of the process is 40nm.  Test chips purposefully contain features smaller than the 

process limit, because figuring out the process limit requires going over the limit. Engineers also do 

“through dose” writing to change the dose used in writing the mask by, say, +10%, 0%, -10%.  A 

30nm wide wire on some processes might print with +10%, but not at all with -10%, and a bad image 

that can't be measured at 0%.  In some cases, features spill over the boundaries of the SEM field of 

view, resulting into a bad SEM image. Particularly for mask modeling tasks using CD-SEM machines, 

low fidelity images will need to be ignored in any analysis. Examples of good and bad SEM images 

are in Figs-6 (a) and (b). 
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Fig-6 (a): Good SEM Images for a Test Chip 

 

 

Fig-6 (b): Bad SEM Images for a Test Chip 

 

For reasons described above, it is essential to filter out good quality SEM images before any test-chip 

analysis. A rule-based method can be applied to filter images. However, because SEM image 

conditions can change from process to process due to varying noise, contrast, and lighting conditions, 

rule-based methods are not optimal. Manually filtering SEM images can also be tedious, time 

consuming and counterproductive. Experts might spend hours filtering good SEM images and still 

make human errors in classification.  

We built a DL-based tool, applying a semi-supervised method to automatically filter good images, 

which took only minutes to filter 4200 SEM images. By contrast, it took an engineer approximately 

four and a half hours to filter the same number of images. We started with an accuracy goal in mind 

of no less than 90%, with a low false negative image filter to ensure that the ratio of good images that 

are falsely classified as bad (and are unnecessarily discarded) remains low. 

2.2 Training and Test Data  

Because this first DL tool did not require an extremely large amount of data, we did not need to use 

digital twins. To train the DL model for filtering out good SEM images, the model required only 2723 

good SEM images, as shown in Fig-7. For the test, we manually labeled 4226 images (3224 good and 

1002 bad images) on which the models’ accuracy was tested. 

 

Fig-7: Acquired SEM Images for Training and Test of the Image Filter Tool 
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2.3 Deep Learning Model  

A deep autoencoder [7] based DL model followed by an anomaly detection network [8] was used to 

filter out automatically the good SEM images. To the best of our knowledge, this framework is the 

first to apply a semi-supervised anomaly detection network along with a deep autoencoder to filter out 

good quality SEM images. The deep autoencoder was first trained on good SEM images to learn a 

probability distribution of good SEM image data and produce a vectorized embedding for the images 

(Fig-8). The trained autoencoder also calculates a reconstruction error which is low for good SEM 

images and high for bad SEM images. Embedding from the trained autoencoder is combined with the 

reconstruction error and fed to an anomaly detection network (Fig-9). The output from the anomaly 

detection network is a probability distribution for good and bad images, which is used to filter the 

dataset of the images. We call this method semi-supervised since we only used good SEM images to 

learn the model. 

 

Fig-8: A Deep Autoencoder Trained to Produce Image Embedding and Reconstruction Error 

 

 

Fig-9: Embedding and Reconstruction Error are Fed to an Anomaly Detection Network 

2.4 Results 

With the filtering tool, we achieved 94.5% accuracy on our test data, with a false negative rate of 5%. 

Filtering the test images took one minute on a CentOS workstation consisting of a 1080ti GPU. In 
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comparison, it took hours to manually filter the good SEM images. Fig-10 shows some of the good 

SEM images filtered by the tool. 

 

Fig-10: Automatically Filtered Good Images 

 

3. TOOL TO ALIGN CAD DESIGNS WITH SEM IMAGES 

3.1 Need for the Tool 

SEM images taken by the mask shops are often misaligned with the corresponding CAD/design-data 

in offset, rotation and scaling. For these reasons, for applications such as DL projects that require both 

CAD data and their resulting SEM images, CAD to SEM image alignment is essential. We 

encountered this misalignment issue while improving SEM digital twins’ accuracy. Improving the 

digital twins’ performance motivated us to build an automatic alignment capability for CAD to SEM 

images.  

While traditional algorithm-based image alignment approaches are available, they are limited, 

particularly for two different image domains, such as CAD and SEM [9]. For same-domain image 

alignment, i.e., CAD to CAD or SEM to SEM, existing methods only work for a small range of 

translation, rotation, and scaling. For cross-domain image alignment, i.e., CAD to SEM, existing 

iterative and feature extraction-based methods fail to work for most of the translation, rotation, and 

scaling values. Many DL-based supervised and unsupervised medical imaging methods showed 

promising image alignment results for the same domain images [17]. A few studies also performed 

cross-domain image alignment between Magnetic Resonance Imaging (MRI) and Computed 

Tomography (CT) scan images [10]. They showed promising results with non-rigid image alignment, 

where local geometries within the image need alignment and learn a non-linear transformation. 

We applied a variant of a DL-based image-registration network and quickly saw superior results for 

CAD to SEM image alignment. Fig-11 shows an example of misaligned CAD and SEM images. In 

this case, the CAD image needed a transformation to align with the SEM image. Fig-12 shows how 

our image-alignment trained model aligned the CAD and SEM images. 
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Fig-11: Misaligned CAD to the SEM 

 

 

Fig-12: Aligned CAD to the SEM 

 

To visualize how the network performed on alignment, we overlapped CAD and SEM images.  Fig-

13 on the left shows misaligned images, and on the right aligned images. In misaligned images there 

are solid filled geometries, where CAD are either partially or not at all overlapped with SEM. Whereas 

on the right, the solid filled geometries perfectly overlap with SEM. 
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Fig-13: Overlapped CAD and SEM (Left: Misaligned, Right: Aligned) 

 

 

3.2 Training and Test Data  

The underlying DL model for CAD to SEM alignment required us to gather at least 700,000 pairs of 

aligned CAD and SEM images to train the model. Due to physical limitations and resource constraints, 

obtaining 700,000 SEM images from mask shops was next to impossible. We managed to get these 

SEM images only through digital twins that generated SEM images. Using the digital twins, we 

generated a large number of pairs of aligned CAD data and resulting SEM images. We induced 

misalignment by applying transformations such as scaling, rotation, and translation with a varying 

range of values for transformation. Finally, using a combination of digital twins and OpenCV [11], 

we generated enough training data (Fig-14) to train our image alignment model.  

To test the model (Fig-14), we generated 70,000 test images from the digital twins. We also manually 

aligned 185 real SEM images to see how the model performed on real SEM images. 

 

 

Fig-14: Training and Test Data for CAD to SEM Image Alignment 
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3.3 Deep Learning Model 

Inspired by image registration in other fields [10], we developed a custom deep neural network to 

align CAD to SEM images for this tool. As shown in Fig-15, the registration network comprises a 

convolution neural network (CNN) for feature extraction from misaligned and aligned CAD and 

SEM images, followed by a feed-forward network to learn spatial transformation such as translation, 

rotation, and zoom-in, zoom-out values. The network used a custom loss function to optimize the 

model, which takes the difference between aligned cad and the output after applying spatial 

transformation on misaligned cad.  

 

Fig-15: Architecture of the CAD to SEM Image Alignment Network 

 

3.4 Results  

We visually inspected overlapping CAD and SEM images and could see extremely good alignment 

done by the DL model. Quantitatively, we used a 1-NCC (Normalized Cross Correlation) score [12]. 

NCC captures pixel-wise similarity between two images. In our case, a score of 1 means the two 

images are perfectly aligned and a score of 0 means they are completely misaligned. On our manually 

aligned test images, we saw an average 0.9 NCC score. Examples of alignments of CAD and SEM 

images are shown in Figures-16 (a-e), where the DL-model shows promising results.  

 

Fig-16 (a): Case-1: NCC Score of 0.9934 
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Fig-16 (b): Case-2: NCC Score of 0.9905 

 

 

Fig-16 (c): Case-3: NCC Score of 0.9891 

 

 

Fig-16 (d): Case-4: NCC Score of 0.9881 
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Fig-16 (e): Case-5: NCC Score of 0.9846 

 

4. DEFECT CLASSIFIER FOR VSB WRITERS 

4.1 Need for the Tool 

Variable Shaped Beam (VSB) mask writer systems are incredibly reliable machines that write mask 

patterns 24 hours a day, 7 days a week. On rare occasions these systems show wear and tear, such as 

aging parts, which might cause errors in printing. It is important to quickly diagnose these errors, 

debug and fix them, and put the machine back to operation as soon as possible. When an error occurs, 

expert field application engineers must collect relevant information such as log files, history of the 

equipment, and SEM images containing defect patterns for the diagnosis. The SEM images are one of 

the most crucial pieces of information that engineers use to identify and classify the defect and further 

diagnose which component in the VSB writer machine caused the error to occur. This process is 

tedious and time-consuming. We built a third tool to classify such defects in VSB writers. This DL 

tool uses SEM images to identify errors in the same manner that engineers use to debug the errors and 

fix them. Fig-17 shows the architecture of a typical VSB writer. 

 

 

Fig-17: Architecture of a Typical VSB Mask Writer (Courtesy NuFlare) 
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Electrons are fired in shots, patterning the mask in rectangular or triangular shapes through the VSB 

writer. A column of a VSB writer principally has three components. First, an electron gun forms an 

electron beam. Second, the upper part consists of the first shaping aperture, shaping deflectors, and 

the second shaping aperture. Shaping deflectors are responsible for moving the beam onto the second 

shaping aperture to create different VSB shapes, either rectangular or triangular. The upper part is also 

responsible for controlling the shots’ size. The third component or lower part consists of two or more 

deflectors, ensuring accurate shape positioning on the mask. 

Problems in any of these components of the VSB writer can cause errors while printing. For example, 

due to an issue in the electron gun, dose intensity can vary, causing a lower dose margin and the 

geometries to shrink (Fig-18 (a)). A problem with the sub deflectors in the lower part of the machine 

could cause shots to be printed at wrong positions, resulting in a position error (Figure 18 (b)). 

Similarly, a problem in the shaping deflectors in the upper part of the machine can cause distorted 

shapes on the mask, resulting in a shaping error (Fig-18 (c)).  

Our VSB defect classifier tool takes a defective SEM image as input and classifies it as a dose error, 

shape error, or position error. We also used the first two tools in the toolset along with this third tool 

to filter good images from the set of real SEM images, and to align CAD and SEM images to improve 

the accuracy of the SEM digital twins. 

 

Fig-18 (a): Dose Error 

 

 

Fig-18 (b): Position Error 
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Fig-18 (c): Shape Error 

 

 

4.2 Training and Test Data 

Creating the training data for the VSB defect classifier’s DL model turned out to be one of our most 

intriguing challenges. It’s impractical to get SEM images with all three types of dose, shape, and 

position errors, let alone specific subtypes of each error category. For example, a dose error could 

occur in various patterns and for a large number of varying dose intensities. Likewise, a position error 

occurs due to a permutation and combination of shifting shots from their original position. Similarly, 

a shape error could occur due to the removal or resizing of shots in varying conditions. It was essential 

to induce and simulate all possible states and conditions for each error type. Furthermore, different 

resist types, etching variations in printing, and other variations in images captured by SEM machines 

make this problem challenging to model using deep learning. 

We used TrueMask®️ DS, a GPU-accelerated mask-wafer double simulation platform offered by D2S, 

to simulate various error types, followed by the SEM digital twins to generate more than one million 

SEM images covering regular patterns and all three types of defects (Fig-19). Our observation is that 

DL can learn features from the SEM images generated using digital twins, then use that learning to 

find defects on real SEM images. Rarely, we observed that digital twins could not embed some 

peculiar noise and line edge roughness to output SEM images similar to the actual SEM images. In 

these cases, we needed to ingest a minimal number of real SEM images, so that the DL classification 

model could “see” these rare SEM images for learning. For the test, we printed masks with induced 

errors and took more than 2000 real SEM images. Expert application engineers at NuFlare manually 

annotated 250 real SEM images by crowdsourcing used for model evaluation (Fig-19). 

 

Fig-19: More than 1M images were generated using DT. More than 2K SEM images were taken from printed masks. 
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4.3 Deep Learning Model 

A typical DL-based image classifier inspired the DL model for the VSB defect classification task. We 

tried VGGNet [14] and ResNet [15] neural networks first, which didn’t work out of the box. We then 

used a custom variant of ResNet architecture that consists of multiple convolutional layers with skip 

connections across them for feature extraction, and a few fully connected layers for spitting out the 

error category probabilities. Reference and defect SEM images are input to the DL model, which 

outputs a probability that the error belongs to one of the three error classes or is normal. 

 

Fig-20: Architecture of VSB mask defect classifier 

4.4 Results 

The DL model for the defect classifier for VSB writers showed promising results on the test data. 

When we compared the DL model’s results with human labels, we found that they were equivalent. 

We also found evidence that human labels were biased towards the types of errors the application 

engineers had seen in the past. The DL model results were more neutral. This was only possible 

because we were able to complete the DL training with more than a million SEM images with a large 

variety of the errors in each category using digital twins.  

Figs-21 (a) and (b) show two types of examples from our results: a position error and a shape error. 

There are four images for each example: from left to right, the reference SEM image, the error SEM 

image, a heat map visualization that shows what the neural network sees in the input SEM image, and 

finally the probabilities of each error occurring as estimated by the model. As these examples show, 

the network is able to focus on the region where the error persists in the SEM, and there is a 95% or 

greater probability the model assigned the correct error category. We found the network visualization 

extremely useful. 

Fig-21 (c) shows an example where the DL model gives almost equal probability of 45% and 55% 

respectively that a dose or shape error exists. This example reflects a complex situation where it is 

hard for the network to discern and differentiate between the error categories. When checked with the 

expert engineer, it turned out that these kinds of errors were hard even for them to classify. 
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Fig-21 (a): Example of Position Error 

 

Fig-21 (b): Example of Shape Error 

 

Fig-21 (c): Example of Dose and Shape Errors Being Equally Identified 

4.5 VSB Writer Defect Classifier Dashboard 

What is a DL tool without being used in production? We built a dashboard to deploy the DL model 

for the defect classifier in production. While the work is still ongoing, some of the application 

engineers already find this extremely useful. A view of the tool’s dashboard is shown in Fig-22. The 

dashboard’s features include giving users the opportunity to upload a dataset of defect SEM images, 

to select a specific DL model to run the inference on it, and to visualize the prediction performance of 

the tool right there.  

This dashboard is built using Plotly [16], a data-science application tool for creating web-based 

dashboards. The dashboard can be hosted on on-premise workstations for internal use by customers 

or vendors. 
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Fig-22: VSB Writer Defect Classifier Dashboard 

 

4.6 Generalization to Classifying Other SEM-based Defects 

We used the same digital twins that were used for VSB mask writer defect classification to generate 

approximately 36,000 synthetic SEM images reflecting various defects found in real SEM images, 

then used them as training data for another classification model. Fig-23 shows some generated SEM 

images from the SEM digital twins, including one that has a feature resize defect. For the test, first we 

validated the model using images generated from digital twins, then we showed the ability of the 

model to generalize over the real SEM images with errors as shown in Fig-24. 

In the case shown in Fig-24, we wanted to classify feature resize errors in real SEM images. We again 

used the SEM digital twins to generate synthetic SEM images, trained a classification model on them, 

and applied the trained model to real SEM images. These tasks show the strength of using digital twins 

to generate various kinds of data with defects and using the synthesized generated data to train a DL 

model.  
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Fig-23: Generated SEM Images. Second image has a feature resize defect. 

 

 

Fig-24: Real SEM Images with Feature Resize Errors 

 

Fig-25 shows the DL model used for classifying real SEM images with feature resize errors. For this 

task, we used a custom ResNet [15] architecture. 

 

Fig-25: ResNet based classification network 

 

With the trained classifier, we saw promising results with reasonable network performance with 

classification accuracy of 94% on the digital twins’ generated test data and accuracy of 90% on the 

real SEM test images. In addition, we had high confidence in the network visualization on real SEM 

error images as shown in Fig-26. 
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Fig-26: Network Visualization on Real SEM Error Images 

 

5. CONCLUSION 

The promising results from the three DL tools in the (Fig-27) toolset demonstrate the power of deep 

learning for mask analysis using SEM images. The fact that we used the first two tools to increase the 

performance of the third one emphasizes that DL-based tools are a great asset in the mask analysis 

arsenal. You can build tools one by one, or apply them on top of others.   

 

Fig-27: Promising Results with the Three Tools 
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Further, digital twins are essential when it comes to harnessing DL to improve the manufacturing 

process.  Without an ability to generate millions of images, particularly images of anomalous data, DL 

engineers must go back to the mask shop or the fab to print more cases and take more SEM images 

which is not practical and impedes production. 

 

Fig-28: Collage of Millions of SEM Images Highlighting Patterns with Curvilinear Shapes 

 

In these cases, deep learning was able to effectively alleviate some of the tedious and error prone 

processes that humans perform today. But DL can only succeed if digital twins are there to generate 

ALL of the specific training data you need. 
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